Topics Covered

Excitation-Contraction (E-C) Coupling.
- E-C Coupling in Skeletal vs. Cardiac Muscle.
- NMJ Transmission.
- Membrane Propagation of Action Potential (AP).
- Voltage Gated Ca2+ Channels.
- Calcium Release Channel (RYR-1).
Membrane (Lipid Bilayer)

Transmembrane Signaling

PEP 8302 Module 2 (Class 1)

Activation of Neurotransmitter Release by Synaptic Vesicle Fusion

Propagation of Muscle Action Potential (MAP) along sarcolemma/T-tubule

E-C Coupling

Differences in E-C Coupling Between Cardiac and Skeletal Muscle

FIG. 2. Models of muscle E-C coupling. Depicted are the mechanical coupling model for vertebrate skeletal muscle, and the calcium-induced calcium release (CICR) model for cardiac muscle.
Skeletal Muscle Excitation-Contraction Coupling

Spatial registration of the DHP tetrad structure on the T-tubule membrane with the RYR-1 receptors (feet) of the SR membrane in skeletal muscle.

Tetrads associated with every other RYR-1 “foot” group on skeletal muscle SR membrane.

Irregular non-tetrad arrangement of DHP receptors in cardiac T-tubule membrane. Not required due to trigger calcium influx.

SERCA I & II

DHP Receptor Tetrad

Diagram Note:

- T-tubule membrane
- RYR-1 receptors
- DHP tetrad structure
- SERCA I & II

Text Note:

- Calcium release from SR
- Conversion of ATP to ADP
- Movement of Ca^2+ across T-tubule
- Movement of calcium ions across SR membrane
- Reuptake of calcium ions
- Triggering of Ca^2+ in cytoplasm

Diagram Note:

- T-tubule membrane
- RYR-1 receptors
- DHP tetrad structure
- SERCA I & II

Text Note:

- Calcium release from SR
- Conversion of ATP to ADP
- Movement of Ca^2+ across T-tubule
- Movement of calcium ions across SR membrane
- Reuptake of calcium ions
- Triggering of Ca^2+ in cytoplasm

Diagram Note:

- T-tubule membrane
- RYR-1 receptors
- DHP tetrad structure
- SERCA I & II

Text Note:

- Calcium release from SR
- Conversion of ATP to ADP
- Movement of Ca^2+ across T-tubule
- Movement of calcium ions across SR membrane
- Reuptake of calcium ions
- Triggering of Ca^2+ in cytoplasm

Diagram Note:

- T-tubule membrane
- RYR-1 receptors
- DHP tetrad structure
- SERCA I & II

Text Note:

- Calcium release from SR
- Conversion of ATP to ADP
- Movement of Ca^2+ across T-tubule
- Movement of calcium ions across SR membrane
- Reuptake of calcium ions
- Triggering of Ca^2+ in cytoplasm
Voltage-Gated Calcium Channels

- multiple types of voltage-gated Ca2+ channels.
 - first distinguished on the basis of their voltage and time dependence single channel conductance properties as well as pharmacology.
 - also classified as low voltage-activated (LVA) and high voltage activated (HVA) channels depending on the degree of membrane depolarization required to activate the channel.
Cultured Human Skeletal Muscle Myotubes

Phase contrast micrograph of human skeletal myoblasts differentiated with horse serum to produce myotube structures.

α2-Subunit Expression In Mouse Dysgenic Myotubes

Transfer cytoplasmic loop of the skeletal L-type channel to the cardiac L-type channel this rescues contractility in the myotube.

Compounds Capable of Blocking Voltage-Gated Calcium Channels

L-type channels (skeletal, cardiac, smooth, neuronal, endocrine)
- dihydropyridines (DHP)

P/Q-type channel (neuronal, endocrine)
- Aga-IVA (funnel web spider)

P/Q- and N-type channels (neuronal, endocrine)
- conotoxin (marine snail)

T-type channels (α_{1G} neuronal)
- Kurotoxin (snake venom)
Diseases Associated with Mutation of the α-Subunit of the Voltage-Gated Calcium Channel

- familial hemiplegic migraine (FHM).
- episodic ataxia type 2 (EA-2)
- both involve mutation of the α1A subunit of the P/Q type channel

Calcium Release Channel (RYR-1 Receptor) of the SR Membrane

- calcium ion

Compounds Capable of Modulating Calcium Release Channel (RYR-1) Activity

physiological activation of RYR-1 in skeletal muscle is due to a mechanical interaction between the RYR-1 and DHP receptor.

RYR-1 can be activated directly using a number of agonists

- caffeine
- 4-chloro-m-cresol
- ryanodine (non-reversible activator)
Diseases Associated with Mutation of the Calcium Release Channel (RYR-1 receptor)

- central core disease (histological classification)
- central region of the myofiber contains no contractile apparatus
- associated with elevated myofiber calcium and subsequent calcium-dependent proteolysis within the myofiber

- malignant hyperthermia
- closely associated with central core disease but does not always coincide.
- usually diagnosed after inhalation anesthesia induces uncontrolled activation of the RYR-1 receptor followed by muscle contraction and a subsequent pathological increase in body core temperature.
- clinically treated using the RYR-1 blocker, dantrolene.
- clinically tested by caffeine challenge of muscle biopsy.

Malignant Hyperthermia

Number of cases, Mortality rate

- Dead
- Survive