However, upon return to Earth, the adapted motor strategies used during flight are often ineffective for accomplishing goal-directed terrestrial behavior.

Additionally, returning astronauts experience many physiological changes such as altered vestibular and proprioceptive functioning and muscle atrophy.

These changes contribute to decrements in motor control of crewmembers returning to Earth.
Many motor control problems can persist for months after the flight. Documented problems in postflight locomotor control include the adoption of a wide base of support, increased vertical projections of the center of mass, increased variability in ankle and knee joint motion and alterations in head-trunk control. Of particular interest are the decrements in postflight locomotor control that could jeopardize crew health and safety either during an emergency egress from the U.S. Space Shuttle or Russian Soyuz landing craft, or during activities of daily living within the first month after flight.
This looks like a 60's countertop that may have been on an old space station.

These behavioral decrements in motor control, and the underlying physiological factors, are generally exacerbated as the length of the spaceflight increases.